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MATHEMATICAL MODELS AND ALGORITHMS FOR
TIE COMPUTER PROGRAM ‘WOLF!

Klaus Halbach

Lawrence Berkeley Laboratory
Berkeley, California 94720

1. Introduction

The coﬁpﬁter program FLOW finds the non-relativistic self-consistent
set of two-diménsional ion tfajectories and electric;fields (including space
charges from ions;énd‘electrons) for a given set of initial and boundary
conditions for thé particles and fields. The combination of FLOW with the
optimization code PISA (ref. 1) gives the program WOLF that finds the shape
of the emitter thét is consistent with the plasma forming it, and in addition
varies physicai'characteristics such as electrode—positions, -shapes, and
-potentials so thaf some performance characteristics.are dptimized. The
motivation for developing these programs was the desire to design optimum
ion source extractor/accelerator systems in a systematic fashion (ref. 2).
The work on the programs started in the spring of 1973 and was a team effort
by William S. Cooper, Klaus Halbach, and Steven B. Magyafy, with the respon-
sibilities distributed as follows: W.S.C., as.the "customer' and user,
specified in essence what the program should do, ahé provided the infor-
mation and understanding relating to the plasma-determined boundary condi-
tions of the emitter; K.H. formulated the mathematical models and, where

necessary, algorithms; and S.B.M. translated that into a usable fast com-
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puter program. As is true for every good team, each member also made
contributions to the parts of the effort that were nef his direct re-
sponsibility.

It is the purpose of this report to explain.and derive the mathe-
matical models and algorithms that approximate the real. physical processes.
Serving (mostiy) to document a computer program, it has eeen attempted to

make this report as self-contained as possible by 1nc1ud1ng as many relevant

topics as could be done without making the report unw1e1dy Even basically
"text book" subjetts have been included when it was considered net likely
that all potential readers would have the necessary faﬁlllarlty with them.
The materlal descrlbed goes a little bit beyond the present status of FLOW
by replacing some of the originally used algorithms withvhewer ones that
are now beingvineorporated into the program, or will be incorporated in
ﬁhe‘immediate future. Since the computer program was:developed under time
pressure, because of the desire to’produée results very fast, and also
because of competition with other work, there may beusome parts that'are
not quite as elegant or as fast as one could make them. While it is un-
likely that this led to significant waste of computer time, suggestions for
1mprovements would be greatly apprec1ated particularly since further develop-
ment of the program is an ongoing process.

To make a simple updating of this report at a.later time possible,
and also to improve itslreadability,'ali detailed mathematical developments
have been put into appendices, and an attempt has been ﬁade to make the
report understandable without having to read the appendices. Consequently,
the appendices have been formulated in such a way thaf each is an essen-

tially self-contained chapter, with only few references to other appendices.




2. Units and Notation

Since the physical dimensions of the structures to be modeled are
of the order of centimeters, and not meters, we don't use S.I. units, but
Volt, Amperes, Seconds and Centimeters.

We use an x-y coordinate system fo describe the two-dimensional
geometry we are dealing with. It is frequently convenient to use complex
arithmetic, and we then use z =x+ iy, indicate real and imaginary parts of
complex numberg by Re and Im, and indicate the complex conjugate of a number
by *. While the Qariable names in the computer programs often‘are the same
as the ones uséd.here, this is not always so. it would also have been incon-
venient to always have the same quantity associated with every symbol used
-in the appendiées. While this can hardly lead to misunderstandings, there
is one exception: The symbol V describes the scalar potential everywhere
with the exceptioh of Appendix F, where it describes the negative of the
scalar potentialﬂ"

In the apﬁéndices it is repeatedly necessary to perform cyclical
sums over quantities that are associated with the cofners of triangles.

When such summatioﬁs go ovér the three corners of a triangle, the sum is
written by writipg down one specific term, preceeded by g. Similarly, we
write g for cyclical sums that go over all six points surrounding a mesh
point. In some, bﬁt not all, cases it is important that the three’corners

of a triangle are sequenced in proper cyclical order, namely going in
counterclockwise direction around the triangle. 1In the context of reviewing
some surface integral formulas, Appendix D gives two explicit formulas for

the area 6f a triangle that are usedlfrequently in Appendices A and C and

can also be used to determine correct cyclical order. The derivation of these

formulas involves some manipulation of cyclical sums that is also often used.




3. The Program FLOW

a. General Remarks

This pfograh accomplishés the objective stated in the Introduction
in the following way: The twb-dimensidnal space that oné wants to treat
is covered by an irregular triangular mesh (Section Sbj, with boundary
sections beingieifher on given scalar potentials, or on electric field
lines. The program POISSON (Section 3b) calculates the scalar potential
at the mesh péints. |

It is assumed that the electrons in the plasma in the vicinity of
the ion eﬁittef surface have a Boltzmann distribution:with temperature
Te= eVe/k, and thét, as a consequence, the electron'density in the.region
of interest is proportional to exp (scalar potentiai/Ve). The subroutine
ELECTR deposits qhérges at the mesh points that represent the space charge
caused by thesé>Bbltzmann electrons.

Tons coming from the emitter will have various charge to mass ratios
and will have a'Spfead in energy and emission angle.  This'physica1 reality
is modeled by letting a number of beams emerge from each line element that
represents a part of an emitter surféce. Each such beamlet is characteriéed
by a charge to maés ratio, the current it represents, and an initial energy
and trajectory diréction. .The routine BTRACE traces each beamlet and
deposits the approériate charges at mesh points. The trajectory calculation

does not take into account relativistic effects, and the self-produced .

magnetic field is consequently also ignored.

b. POISSON
The reasons for using this program (originally developed by A.

Winslow, ref. 3) to solve the electrostatic field problem are manyfold:
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The difference equations are solved in an irregular triangular mesh that is
produced by a mesh generator that is part of the POISSON prégram package.
This makes it péssible to héve a large density of mesh points where one
needs it, and also has the advantage of having all surfaces, like emitters,
electrodes, and field lines that are a boundary, defined by mesh lines,
without having to fesprt to interpolation. This in turn leads to compara-
tively simp1e difference equations. They are derived'in Appendix A mainly
to show how the space.pharges have to be treated: The. space charge distri-
bution in the mathematical model uSed here consiétsﬂof many curved line
charges and the-charges resulting from the electrons;bi.e., is extremely
nonuniform. The fact that the equivalent space chafges have to be dis-
tributed among the corners of every triangle in such a way that their
""center of mass' is the same as that of the distribution they represent is
quite plausibie,'but not so trivial as to make a derivétion and proof
unnecessary. Wiﬁhvgiven space charges, the program solves for the scalar
potential values at the mesh points with an overrelaXétion method that
finds its own 6ptihum over-relaxation factor, and fermihates the iteration
process when a cbnvergence'criterion indicates that oné is sufficiently
close to the solution. The program was originally written to find the
vecfor potentials A from which one derives magnetic fields B. Except for
removing sections of the magnetic code that are ﬁotjneeded for this
application, no changes were made, and the variable ﬁémes (vector potential

A, etc.) reflect that.

’

c. ELECTR

Since the density of the Boltzmann electrons is proportional to

exp (scalar potential/Ve), they are usually ignored beyond some distance




from the emitter. In the region where they are considered, they are taken
into account byvcalculating for every triangle the total charge and its
'"center of mass'". From that, the charges are calculated for each corner
of the triangle, and are used with the appropriate underrelaxation factor
(see Section 3e), to update the electron charge array. The relevant for-
mulas are derived in Appendix C and summarized at the end of Appendix C.
d. BTRACE

Each beamlet, endowed with a charge to mass ratio and a current, is
traced through one triangle at a time, starting with given initial energy
and trajectory direction at the emitter. After haviﬁgidetermined the trace
through a particular triangle, the charge, and its '"center of mass", are
calculated, and then the proper charges for the three corners of the tri-
angle are computed and used to update the corresponding array. The
relevant formulas are derived in Appendix J, both with and without a

uniform magnetic field perpendicular to the x-y - plane.

e. Sequencing of Subroutine Calls in FLOW

Every time after POISSON has calculated new séalar potentials at the
mesh points, ELECTR is called to recalculate the electron charge deposition.
To avoid computational instabilities and speed up convergence, the newly
calculated electron charges are not deposited directly as calculated, but
comparéd with the previously existing electron charges. The recommended
change is not fully applied, but first multiplied with an underrelaxation
factor that lies between .05 and .3. After having alternated between
POISSON and ELECTR a sufficient number of times, the recommended changes
in electron charge become small enough that one can calculate the beam

traces and deposit the thus generated ion charges. Then the POISSON-ELECTR




iteration starts again until it has converged, giving the signal to use
BTRACE again. This process is repeated until the ion charge-changes are
sufficiently sméll to indicate convergence of the FLOW evaluation. It is
the opinion of all involved persons that this sequencing and underrelaxation
scheme is, althqughvit works, at present the weakest part of the program.
Past ”experimeﬁtation” has led to the belief that substantial improvements
may be possible; but are not going to be easily obtained. It should also

be pointed out in this context that some well posed evaluation problems

have been encountered (for instance when in some region thé majority of ions
is reflected by‘suitably applied potentials) where convergence was extremely

slow, or convergence could not be achieved at all.

f. Test Problém

For comﬁufer programs of the nature and compiexity of FLOW it is
very desirable td have test problems that are non-trivial for the computer,
yet have analytical solutions. The reason for wanting such test problems
is not only the need for finding possible "bugs", but'also to see what the
discretizationééoﬁsequences are. Such a study can, for instance, indi-
cate what types bf mesh symmetries are preferable, or.sﬁould be avoided.

The "cﬁt.éff” one-dimensional diodes with matching Pierce-type
electrodes represent a family of test problems that is very well suited for
our purposes, and they are discussed in some detail in Abpendix F. The
only important feature of the general case that cannot be treated is the
angular distribufion of the ions leaving the emitter. That is clearly not
a significant shortcoming, since a test with all ions being emitted per-
pendicularly to the emitter is probably more severe (because of possible

mesh-geometry-influence) than one with some angular distribution.




Equationér(F—lS) and (F-16) give an analytiéallexpression for the
matching electfode structure of the general '"cut off" one-dimensional diode,
and;requifes straightforward numerical integration fof actual application.
Equation (F-19) describes a special class of these diodes that allows repre-
sentation of the integral in closed form. That formulé Wés used for one
case of no electrons, and only one ion species, with ﬁon~zero initial energy,
and V;=:6, to cdﬁstrﬁct a test problem before elect%ons were introduced, and
Fig.‘(Fl),'(FZ):show the result of such a test.run: fFig; (Fl) shows the
vacuum-equipotentials, and the trajectories of the ioﬁsﬁin thé vacuum
fields. After the iteration process between POISSON and'BTRACE converged,
Fig. (FZ)»was'élotted; showing precisely the expectéd equipotential- ana

trajectory-shapes.

4. The ProgravaOLF

The FLbW.calculations all by themselves are n§tvfealistic, since
one does not khow what the shape of the emitter surfacéﬁéhould be. By
making certain éésumptions about the nature of the plasha behind the emitter
surface (ref. 2), one can define this shape by requifihé»that everywhefe on
the emitter the electric field has a value that is related to the initial
conditions and other properties that are associated with the ions and elec-
trons (see Appeﬁdix H). It is furthermore desirable to optimize some pro-
perties of the béams at the output end of an‘extractorvstructure. The
quantities considered exclusively so. far are the angles e between the
tangents to the trajectories at the exit, and a given direction. Both the
constancy of the electric field along the emitter surféée and the parallelity

of the exiting ions are approximately obtained by minimizing the function

2 2
g W, (E, - E)™ + ]y( W (o, - 0"




with appropriatély chosen weights Wi, Wk. It is fairly easy to add to this
function, or to make the prescribed values of the electric field or exit
direction (assumed constant (Eo,eo) above) dependent on the beam. The
parameters used for optimization are the shape of the emitter surface,
positions, shapes, and pétentials of electrodes, and possibly also some
properties associated with the emitter forming plasma. The optimization is
aécomplished by linking FLOW with the optimization program PISA (ref. 1),

a least squares optimization program that obtains rapid convergence by
controlling theisizé of the parameter changes with a self-adjuéting under-

relaxation method.

5. Future Development

The pfqgrém package described in this report was developed to
model two diménsi6n31 structures. It would be fairly easy to modify the
affected progrémsfto describe problems with cylindrical symmetry, provided
one does not wént td deal with skew ion trajectories. Incorporéting tra-
jectories that dé not stay in a meridional phase adds not only a new
dimension to thé»initiél conditions, but réquires also development of an
additional tréjéétqry tracing code.

Liftihg'thé réstriction to non-relativistic particles requires cal-
culation of the'sélf—magnetic field, and a new algorithm for the trajectory
computation. Béth of these modifications would require some work, but

should not be too difficult to implement.
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APPENDIX A

The Difference Equations for Solving the Two-Dimensional Poisson Equation

In order to approximately solve the Poisson equation

div(eE) = p , (A1)

with

"Bz -grad V. : | (A2)

representing the electric field, V the scalar potential, e the relative di-

-14

electric constant multiplied by e, = 8.85+10 A.secV‘—1 em™ , and p the

0

charge density, we use the variational principle
o .2 . _
P = [(eE” - 2pV)da = Min . , (A3)

This integrai is.tb be taken over the whole problem area, with the desired
boundary conditions imposed at the boundaries. While this variational
principle is a regular textbook subject, some readers will use it infre-
quently enough to make it worthwhile to include its proof in Appendix B.
The variational principle will Be used in both directions, i.e., the fact
will be used that if Eq. (A3) is‘satisfied it follows that (A1) is satisfied,
and vice versa.

The values of V are intfoduéed at the mesh points of an irregular
triangular mesh (see Fig. Al) that has the property that each mesh point
(except those on a boundary of the problem) is a vertex of six triangles.
The x,y coordinates of the mesh points are computed by a mesh generator,
(ref. Al) with mesh regions defined in such a way that one obtains
approximately the desired mesh size in every such region of the problem

geometry. € is assumed to be constant throughout every triangle, but may




have different values in different triangles in the genéral case; since there
is no extra cohputation associated with this generalization, we treat e that
way, even though for the present application € will have the same value €9
throughout the whole problem. There are no restrictions oﬁ p(x,y).

In order to be able to calculate, and then minimize, the integral in
{(A3), one has té ﬁake a rule that determines how V is to be calculated
inside every triangle. A rule that leads to the simplest meaningful differ-
ence equation ié‘the following:

The potential inside a triangle is a linear funétion of the values
of the scalar potential at its vertices, depends in addition only on the
charge density in the triangle, and is'invariant to ﬁfénslation and rotation
of the coordinatevéystem. |

This ruie'Has the consequence, as will be seen in more detail below,
that when optimizing T (Eq. A3) with respect to the poténtial at a parti-
cular mesh point, one obtains a linear relationship betwéen that potential
and the potentials of the other vertices of the six triéhgles surrounding
the point under‘consideration.

To arrive at a description of V within a triangle, we discuss first
the consequences of a discontinuity of V, as one goes from one triangle to
another across é line cbnnecting two mesh points. Clearly, a singularity
would result for %; and this singulafity would not disappgar upon calcula-
ting feEzda. To prevent this from happening, V has tQ'vary along a line
cénnecting two mesh points in a unique way, depending only on the values of
V at these two mésh points. The only reasonable function that will do this

is the linear function of x,y that assumes the proper V-values at the two

mesh points.




- 12 -

Assuming for the moment p =0 within a triangle, it is clear that
the function V0 that minimizes the contribution from that triangle to T
must satisfy Eq. (Al) with p =0 within the triangle. With the above
stated boundary condition, V0 must obviously be a line;r function of x
and y in the triangle, assuming the values Vl’ V2, V3 at its vertices. For
p#0, we can sét V =_Vb~+V4, with V4 satisfying Eq. (Al)'with non-zero
n, subject to the Boundary'condition V4EEO along the sides of the tri-
angle. With §05=—grad VO’ §4 = -grad V4, the contribufioﬁ to T resulting

from the triangle‘under consideration becomes
B = 9 _ R
»U‘-f[e,(L0+E4) - 20 (Vy+V,)1das2,
and its derivative with respect to the potential Vl’ at Vértex'l is

oF

da+je Jﬁ'da . (A4)
v,

et

fp
0 3\/1

In taking this derivative we have used the fact that V4‘does'not depend on
Vl' We will now proceed to show that the last integral on the right side
of Eq. (A4) is zero, meaning that it is sufficient to assume that the po-

tential within a triangle is a linear function of x and y. We then calcu-

late BVO/BV1 (Eq. (A7)), and then the first integral on .the right side of

Eq. (A4), (Fgs. (A10) and (All1)). Finally, IpBVO/Bvlda is expressed in terms

of the charge, and its 'center of mass', within the triangle (Eq. (A12),
(A13)), and the contributions from a11 trlangles immediately surroundlng
point 1 are added up to give the difference equation (Al4).

To Show that
I3 'z ] = V : (AS
fﬁl.]al :/BV] da 0 > )

it is sufficient to prove that statement to be correct for the case where

p is a &-function. It is furthermore clear that since V0 is a linear func-
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tion of x,y, EO’ and with it aﬁo/avl, is not dependent on x or vy, éo that

we have to consider onlyfﬁ4da. It is convenient to break this integral

up into two parts: one integral over an infinitesimal disc surrounding

the singularity, and the other over the rest of the triangle. Since

|E4l ~n 1/r for sufficiently small distance r from the singularity, the inte-
gral over the ihfihitesimal disc goes to zero likc the linear dimension of

the disc. The other integral is easily converted to a line integral:

oV aV

Taas o6 A0 22 =3 - e
fL4dd— —f(cx o +ey gy) dxdy—eygﬂv4dx ‘ex4§V4dy

- _ - ->
fb4da = (exxey) X gﬁ V4ds .

This line integral has to be taken over the boundary of the region under
consideration, ifé; the sides of the triangle and the circumference of the
infinitesimal disc; The former integral is zero because V4 = 0 on the sides
of the triangle, and the latter integral vanishes with r since V4 behaves
like 1nr, andAfldg] like r.

To evaluate the remaining two integrals in Eq. (A4), we have to
find

aV,/3V, = Lim [(Vy(x, y, V) +dVy, ¥y, Vo) -vo(x,y,vl,vz, V))/dv,]

v >0

Since Vo(x,)u Vl’V2’ Vz) is a linear function of x and y, assuming the

values Vl’ V2,‘V3 at the corners of the triangle, aVO/BV1 becomes (see Fig.

A2):

'aVO/BVl = Vo(x,yg dVl,O, 0)/dV1 = dI/hl . (A6)

Multiplying numerator and denominator of that fraction by b1 gives as
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alternate form

BV,/3V, = 2a /2a = (x(yz-—y3) * Xy g-y) * xg(y-y)))/2a, (A7)

where a is the area of the total triangle, and a, is the area of the partial

triangle indicated in Fig. A2.

. . > - >
Introducing now the unit vectors €1, €,, €5 as indicated in Fig. A3,
it followé from Eq. (A6) that
Mk _ - .
aLO/BVl = el/h1 , (A8)
and consequently
oy -> > - ) :
EO = elVl/h1 + e2V2/h2 + e3V3/h3 - (A9)

Because EO is independent of x,y, it follows that

v V_.cosa V_cos a
> 1 1 2 3 3 2
J2E 9E /3V. - da = h b, - (--- - ) ,
070 1 171 h1 h1 h2 h3
f N bl cosu3 co'su,2
2EQE/OV. cda =V - oV, e 2y 2
00 1’ 1 hl 2 h2/bl 3 h3/b1

From Fig. (A4) follows h2/b1 = sin(xs,and from Fig. (AS) follows bl/hl =

cota2-+ cotas, giving
frﬁ aﬁ /3V., + da = ~l-~(V {cota, + cota.) - V,cota, - V_cota ) € . (A10Q)
0T 2 V1t 2 3 2 3 3772

While this form is very well suited for interpreting the individual
contributions in terms of the geometry of the triangle, for a computer pro-
gram one obviously has to express the cotangents by the coordinates of
the corners of the triangle. One can clearly write (see Fig. A4)

ot blbzcosa3
3 blb251n ug
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Since the numerator equals the scalar product of the vectors connecting
point 3 to points 1 and 2, and the denominator equals twice the area of

the triangle, we get

(g = x2) (X5 = x3) + (¥} - yg) (v, - vq)

cot ag = >a v . (Al11)

To evaluate jpavo/avlda, we use the explicit form for avo/av given

1
by Eq. (A7). It is also convenient to use the '"center of mass" coordinates

x,y of the charge distribution p in the triangle:
[x = [xoda/qg; ¥ = [ypda/qy; qy = [eda . (A12)

To prevent the.artificial ""disaster" of the line charge N being zero from
occurring, one has to treat the effects from charges of different signs
separately, whiéh is done in the computer program.

Using Eq. (Al2) in Eq. (A7) yields for the line charge 4y associated
with point 1 of thé triangle under consideration:

o X(Yy-¥) *+ X, (Y,-¥) + x, (¥-Y,)
_ o 27 Y3 2 Vs 3 2
q; = prVO/avldd = q, >3 . (A13)

From the geometrical interpretation of ql/qO as the ratic of areas of tri-
angles (see Fig. A2) it is clear that q;+4,*d; = qy, where q, and q, are
the line charges associated with points 2 and 3 when optimization of T with

27 73

of mass' of the line charges ;> 9ys 93 deposited at the corners of the

respect to V_, V_, is considered. It is furthermore clear that the 'center

triangle coincides with the 'center of mass' of the p-distribution. To

show this explicitly, we need to consider only

§ xlql/q0 = §-§ xl(yz-ys)/234-§'(§ xlx3 —é x]xz)/2a+-(§ xlxzys-é xlxsyz)/Za .

The factor multiplying X is clearly one, and the two differences of the
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cyclical sums are obviously zero.

When optimizing T (Eq. A3) with respect to the potential at point 1,

- one obtains contributions according to Eqs. (A4, A5, Al0, All, A12, A13) from every

triangle surrounding point 1. The potential of every point next to point 1
makes twocoﬁtributions to BT/BVI, one frbm each trianglé that has the linc
connecting point 1 With its neighbor as a side. Instead of érdering the
terms coming from Eq. (Al0), (A13) according.to triangles, it is more con-
venient to order thém according to the points surrounding point 1.

' Using a notation explained in Fig. (A6), we get

D sk=Ja .
6

g: (Vl - Vn) (€n+ cot a + El’l— cot a o

n+

One should notice that the dielectric constant ¢ associated with each tri-
angle appears twice in this equation, once as € e’ and once as ¢

Defining the weights

we get:

ViLW =lVW +]q o (A14)
6 6 6

The weights are, for the applications in this report, dependent only on
geometry and need thereforc to be computed only once. The total line

charge L a, associated with the point under discussion needs to be recalcu-
6

lated only, but always, when the charge distribution in the triangles changes.

(n+1)- ~ “n+
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APPENDIX B

Variational Principle for the Electrostatic Equations

We consider the quantity

. 2 '
r=fle®* - 20Vldv , (B1)
i . :
with E defined by
._). .
E=z -grad V , ' (B2)

and the volume integral extending over all space.
We now introduce

V=V, +yV (B3)

0 1
with y representing a space coordinate-independent scalar quantity used for

""bookkeeping' purposes only. Using this in Eqs. (B1) and B2), and

expanding in y, we get

. 2.

T = Ty+yT + YT, (B4)
with
> .2
Ty = f[e(EO) - 2pV,Jdv
-

T, = -2 (Ejgrad V, + pV,)dv (B5)
. 2
T, = [e(grad V) dv . (B6)

Using the identity
E - div (eBV Vv, div E
eE grad V1 = div (a,o 1) -Y v eEg
in Eq. (B5), we get

. X >
T, =2 [ (div €E - p) Vldv - 2[div (eEovl)- dv .
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The second integral in this equation can be replaced by a surface integral
over gﬁbvl, which vanishes since EO goes to zero faster than the surface
goes to infinity (provided the net charge of the total system is zero). We

therefore get:

T, = 2[ (div B

! - p)V1 dv . : (B7)

0
Since T2 is obviously not negative, we come to the conclusion that if

div €E_ =

E = -grad VO; 0= P

0 (B8)

T has a minimum, i.e. however one modifies VO’ T will always increase.
Convefsely, thé potential that gives the minimum value for T hust satisfy
Eq. (B8). When deéling with two-dimensional fields, the volume integral
can obviously be replaced by a surface integral over the two-dimensional
geometry, and if we now drop the subscript 0, the variétional principle

takes the form used in Eqs. (Al, A2, A3).
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APPENDIX C

. . v v L
Evaluation of fe da and je zda for electron deposition

1t has been shown in Appendix A (see Eq. (Al2)) that for proper
deposition of charges in a triangle, we have to know the total charge, and
its 'center of mass', for every triangle. For Boltzmann electrons, with a
charge’dénsity proportional to exp (scalar potential/Ve) (see section 3a, 3c),
this requires calculation of fevda, fevzda if we introduce the argument of
the exponential as‘new variable. |

The derivation of the expressions for these integrals is simplified
if we discuss the more general integral

I=[F (v) da. (€1

We assume that v is a linear function of x and y
v = ax + By + 6§ , (C2)

and the primes indicate differentiation with respect to v. Assuming tem-
porarily that o # 0, and that the values O Vs v3 that v assumes at the
three vertices of the triangle are all different from each other and not
too small, the value for I can be obtained in the following way (see also

Appendix D):

2
1 3! 1 _ 1 dy
I = -&- fax . dxdy = -&— ¢ F'dy = ;;; lj 5"7 F'dv.

Since dy/dv = constant along every side of the triangle, we get, with

F(Vn)= Pn: _
YooYy Y37 Y3

F - )
é 2 v2 —v‘1 v3--v2

<

2771
2~ "1

Q|

1
I=E§

(Fz - F].) =

<
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Bringing the two contributions of the bracket in the last sum onto the
common denominator, the terms in the numerator proportional to B cancel
each other, leaving only terms proportional to a. Their sum is easily

identified as -a - 2a, where a equals the area of the triangle. We therefore

get

1 =2a ] Ffllv,-v)vg-vl (C3)
300

In view of the formulas for the first moments

Voo,
for the case F = e, 1t 1S

convenient for evaluation of (C3) to introduce the two sets of cyclical

3

quantities
My = 1/(v2-v3) (c4)
and
G, = Fuyug s (C5)
giving for Eq. (C3)
I=-2a ) G (C6)
3
To get expressions for thé moment of a function, we consider
3 3
J = 11} N o= — 1 = ]
T [F" xda s JF" da TR
‘and obtain JX = g X4 BI/BVI, or more generally, with z = x+ iy,
\ 3
J =)z, =1 (C7)
z 3 1 Bvl
With Eqs. (C4, C5, C6) we obtain the explicit expression
. = -2 2! - - N -
J_ = -2a ; 2 (F) ujug+ G (ny=ng) - Gyug + Gou) (C8)
For the specific case F = ev, we get
JZ = -2a X zl[Gl(li-uz-US)-62u3+ G3u2] s ' (C9)




|
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with

G V1
1 = € 112113 .

(C10)

It should be pointed out that if one wants the integral and moment
of the same given function, the fuﬁction F used in Ed. (C5) in conjunction
with Eq. (C7) is the derivative of the function F used in Eq. (C5) in con-
junction with Eq. (C6). The notation introduced in Eq. (C5) is therefore con-
venient only for the case of interest here, namely F = eV, It is furthermore
convenient to wrife

“exp(v)’= exp(Vv) * exp(v-V) , (C11)

with

= 1
V= g(vlikvz-kvs)original’ (C12)

and pull the factor exp(Vv) outside all integrals. The function v then

entering the integrands has the property

vtV Vg = 0. . (C13)

This condition, which will be used throughout the rest of this Appendix,
has to be used with some caution: for instance, Eq. (C13) can be applied
after the operation on the right side of Eq. (C7) has been carried out,
but not before.

Equations (C6, C9, C10) are not usable when two values of v entering
these equations are‘identical, or when all values of v are zero. This
means that when the difference between two values of v is sufficiently
small, or when the absolute’values of all v‘s are sufficiently small, round-
off errors become so large that one has to use special expressions suited
for these two cases. We will start with the case where two values of v,
which we assume £o be vy and Voo satisfy

lvz"’1| << 1,
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but without at the same time satisfying Ivli-vzl = Ivsl << 1. To obtain
the expressions for I and its derivatives, it is convenient to introduce

the following abbreviations:

Yy = (V2 - vl)/Z : (C14)

C = coshy ; S = sinhy "v (C15)
-3

Vg = 2v3. (Cl16)-

With Eq. (C13), one then gets

v, = —v3/2+y ;v o= -v3/2-Y : (C17)
vs--.v2 = v4-—y ; vs--v1 = v4+-y | L 5 (C18)
expv,, = e—vs/2 » (C+8); expv, = e_v3/2‘(C-S) (C18)

Using this notation in Eqs. (C4), (C6), (C9), and (ClO){ one obtains after

some manipulation

~V3/2
: 2ae \L S
}I = 7—_._—-2—— (e -C—V4 ’_‘Y—) - (Clg)
4 Y
-vz/2 ‘ v
. _2ae 2 2.8 2 2, 4y
31/0v, = —5—5F (2v4c+ (v, *v°) 7 (v, -2v4-¥)e ) (€20)

To obtain an easily usable expression for BI/av1 is not as straightforward

as it is to get Eq. (Cl19), (C20). To show how our particular form of the

result, Eq. (C21), is derived, we reproduce some intermediate steps: |

—V3/2 V4
ace (26 .
v42-y2 VatY 2

31/av1 =




- 23 _

1 1 .
vy Tltar) - €8y (v,+ )

K= (C-8)+2vy+ (v,-v) (
4

1

K = (C—S)(V4—Y) ("‘,4—+—-§‘+l)~2y~27C-2yv4- S/y
vf-+y2 2v4
K/2y = -C -V4S/Y-+(L -38) v4-+;7rt-7?..y (; +_5§_-§)
. 4 Y V4 -Y
2Y2 v42+y2 2v4
K/2y = vy (C-5/v) +(:'"77“—§—— S(v4-+ 5 ——7?) - y(C-38) [1-+—7§———§J'
. ’ V4 =Y V4 -Y . V4 -Y
: ©o-vg/2 V4 ' : V2 +'Y2
_ae ° 2e C-S/y 2v 8 4
91/3v, = 2 2\, T VaTy  t O gt T vyt -
4 " Vgt Y Vg oY
2v4 '
(C-8) (1+— -75)> . (€21)

Since Iy|<< 1, it is clear that in Eqs; (C19 - C21), one should use the
first terms of the power series for S/y, (C-S/y)/y, to express these func-
tions and S,C.

If one displaces the origin of the coordinaté‘system, it follows
immediately from tﬁe definition of JZ and Eq. (C7) thét Z_Sl/avl = I, and

3
we use this relation to obtain 31/3V2.

91/0v, = T-31/dv, - 31/3v, . (C22)

We now turn to the case where the largest of the absolute values of

v is small compared to one. It is then convenient to expand the

1> V2 V3o
exponential in fevda, [evzda, into a power series, and then integrate the

first few terms individually. We therefore have to evaluate

1= v'da ~ (G23)
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and

n
Jn,z = fvizda . - (C24)

for n=0,1, 2, ---.

With Eqs. (C1) and (C3) we obtain

. 2a ¢ n+2 .
n. I+ (n+2) %"1 “"2“’1”"3‘“ﬂf

I

To make this,expression suitable for evaluation, we rewrite this as

n

—(v1 -vz)(v2-vz)(v3-v1) -(n+1)(n+2)1n/2a =V n+2(v3-v1)+

+2
(VZ"VS)i'VZ

n+2
vy vy
The right side of this equation is obviously zero for Vy -V, E 0, Vy - Vg 0,
v3-v1= 0, i.e. it is possible to factor these terms but. We do this by

using several times the explicit expression for the geometric sum, and start

by rewriting the right side of the last equation as

n+2 n+2 n+l n+l n+2
Va(vy T mvp ) Hvpva vy ey ) Vg ("1”"2_)

Pulling out VooV and then continuing the same process, we get
(Qz-vs)(vs-vl)ﬁﬂd)(n+2)1n/23 = v3(v;+l+ 2 vf+1_vv£))-v2 g vf+1'vv£)- v;+2
= (vs-vz) z v?+1-vv£)— v3(v;+1-v;+1)
(Vl —Vs)(n+1)(n+2)1n/2a _ E V:+1-v ;)_ g V;+l—v ;) - EJ(V?+1-v;.v;+l—v).V;
0 o . 0
1= —(—ﬁ—ﬁ—?-?(—m)—Hs,n(vl,vz, v = [vida . (C25)
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n n-v
_ u ' n-v-u g v
HS’n(vl,vz, vg) = ) 2 v, v v, (C26)
v=0 u=0

H3 n is the homegeneous polynomial of the three variables v of

12 V20 V3

order n with all coefficients equal to one. Despite the fact that this
polynomialvhas (n+1) (n+2)/2 terms, it is easily evaluated with a method
patterned after Horner's method for the evaluation of a poiynomial of a

single variable: by splitting H3 n into an addend H that depends only

2,n

on v,,v,, and representing the remainder by Vg times a factor that is ob-

viously H3 n-1° and then representing H in the same manner, one arrives
RS LS .

2,n
at the following algorithm:

Hyon = Vil nors \
Hy n = Hp ntvoby 0
(C27)
HS,n - HZ,n-FVSHS,n—l
ns=2,3,
With the following initial conditions:
H H = H +v,.; H = H +V, . (€28)

1,1 - Vit TtV Mg T Y3

This recursion formula requires only 3(n-1) multiplications and 2n additions

to calculate HS,n

A convenient alternate method of evaluating H is obtained by

3,n

3

applying Eq. (C13)‘to the explicit expressions of H3 n- This leads to
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vH3,0 = ]
H =0 )
3,1
2 22
Hy o = (v vy +vg)/2
| ' (C29)
.H3’3 = v1 v2 v3
W oo y2y2.,,2,2,,2,2
3,4 V1 V2 TV V3 YV Yy o
With the H3 n calculated, we finally geﬁ
v
- Je' da=2a] H, /(n+2)! : (C30)
. 573,
From Eqs. (C24, C7, C25) follows
; .
2a o (C31)

fvnz da = = X z, — H
(n+1) (n+2) (n+3) 3 1 avl 3,n+l

with respect to v, can be obtained from the last of

The derivative of HS 3

Eqs. (€C27):

aHS,n/Bv3 = Hs,n_1+v3 aHS,n—I/aVS . (C32)

Since H is completely symmetrical in Vis Vo Vg the explicitly appearing

3,n

variable Vg in Eq. (C32) can be replaced by vy or Vo, thus giving a general
recursive method to calculate the needed derivatives.
As done above, one can also obtain explicit expressions for the

derivatives by carrying out the derivatives and then using Eq. (Cl13).

Doing that gives .
8H3,O/av1 =0

8H3’1/3v1 =1

M. .J3v, =V
5,207 7 1 (€33)
H /D = 2 + 2 + 2 +V,V
Hg /v = V) *Vy *Vg TV V3
o /hv, = 2v. v _Vv_+V (v2+v2+v2)
5,477V T V1YY T Y T T3 0
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and one obtains

(C34)

v _ . v 1
fe z da = 2a § § 2 dHS,n/av1 ne3)!

We can now summarize the procedure to calculate the desired integrals:
1) Carry through the normalization leading to Eq. (C13)

2) If the largest of the absolute values of Vis Vs Vg is
smaller than a predetermined number, go to 3, if not go
to 4.

3) Calculate the H and their derivatives with Eqs. (C27,

3,n
C28, C32), or Egqs. (C29, C33), and use them in Eqs. (C30,

C34).

V, -V

4) If the smallest of the absolute values of v 2 3

17 V2

Vg -V is smaller than a predetermined numbef, go to 5, if not
go to 6.
5) Order Vis Vo Vg, without changing the cyelical order, so

that |v1-¥v is the smallest of the absolute values of ‘the

5
differences of the v's. Calculate I= fevda and Jzt=fevzda
with Egs. (C19, C20, C21, C22, C7).

6) Calculate I and J, with Eqs. (C4, C10, C6, C9).
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APPENDIX D

- Integration of functions over triangle area; the area of a tfiaﬁgle; and

cyclical ordering

When integrating functions over triangle areas, the following for-

mulas will be used (see Fig. D1):

[ 5% dxdy = [IF(xey) - FOx,y)ldy

(D1)
fgg-dxdy = ¢ Fdy.
f§£~dxdy = [IF(x ) - F(x v)]dx
! 3)’ _,)’T ,YB
. ' (b2)

3F

5y dxdy = - $ Fdx .

To calculate the area, we use Eq. (D1) with 3F/38x=1. Assuming the vertices

1,2,3 (see for instance, Fig. Al) to be in correct cyclical order, i.e.,

going from 1 to 2 to 3 to 1 representing going around the triangle in counter-

clockwise direction, we get for the area a of the triangle:

: 2 2
.2 d Y270 %%
a = § xdy = 2 f di + xdx = z R 5
31 372 71
2a = ) gy by +xp) = L x 0y -y + ) X0y - vg)
3 3 _ 3 T
2a = ; Xl(yz —YS) = _; yl(xz -XS) (DS)

Equation (D3) can be used to check whether a sequence of three points is

cyclically correct: a>0 is necessary and sufficicnt for order of points
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to be cyclically correct; and a<0 is necessary and sufficient for order of
points to be cyclically incorrect. Should that be the case, one gets correct

order by reversing the order of a pair of points.
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APPENDIX E

Modification of curvature by conformal transformation

We first derive a formula for the curvature of a curve that is
given by a parametric representation: Let t be a real paraméter, and let
the curve be given by x(t) and y(t), or, equivalently, z(t). To obtain

the curvature at t=0, we expand z into a power series

z(t) = Z* Zot + Zt2/2 +

where z, z, indicates the derivatives for t=0. With

. o dlag o o

2= Jzle * (E1)
assumed‘to be non-zero, and

.. _iaz . .

ze = a + 1ib , (E2)
we get v

iag . . 2
z(t) =z e (|z]t+ (a+ib)t /2 + ...)
ia

e Z indicates the direction of the tangent to the curve z(t) at t=0 for
-increasing values of t. We now introduce a local Cartesian coordinate

1y
system, ¢,n with its center at z_, and the ¢ axis parallel to e . In the

0

vicinity of t=0 the curve is then given by

Y
it

lz] »t + at2/2 + .,

bt2/2 +

=3
]

For t =20,

dn/dc = n/i = (bt+...)/(|z] +at + ...)
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is zero, and the curvature kZ at t=0 is therefore given by

C 2 02 dn/o) -2
k= dn/de” = (-;-—(%i—~-]t=0 = b/]z]” .
With Eqs. (E1, E2) we get
. "‘.Uiz 2
kZ = Im(z e /1z]%)
k= 1m(§—)/|i| - (E3)

From the derivation it follows that kZ>>0 if the center of curvature is to
) i
the left of the tangent direction e
If we map the z-plane conformally onto the w-plane with w(z), w is

/

also a function of t and Eq. (E3) is applicable:

k = Im(fJ /1wl . ‘ {(E1)
w W

[f we indicate derivatives of w with respect to z by primes, we get

W= w'ez

. 2 .-
w=w'z + w'z

Assuming that w' and z'=1/w' are non-zero, we get

walal = G i+ gfap/Iv L

-

With Eqs. (E4, E3, El) we get one form of kw:

’ " ia
k, = [k, + In (-3-, e )1/]w'| (ES)

To obtain another expression for kw’ we solve Eq. (E5) for kz, and then

exchange all z and w, giving




g k= lz'IkZ-Im,—Z——e . (E6)

As before, curvatures are >()when‘the center of curvature is to the left
of the tangent defined by direction of progression along the curve.

In addition to having the option of expressing kZFin terms of
derivatives of z with respect to w, or w with respect to z, it can also be
convenient to express the direction of the tangent in terms of either @ or
a - The relation between these two directions is obviously given by

ia o

e e %= w'/wt| = |z']/z ' (E7)

so that Eqs. (E5, E6, E7) allow to write the result in four different ways.
One can Qée the same technique to obtain the ﬁext higher order te}m,

k&, the change of ‘the curvature pér unit length a]ong the tangent. Since

we do not use thése formulas in our discussions, but the reader may want to

expand on the treatment in Appendix F, we give here the result without deri-

vation:

(o w''! 3w 2 ‘Ziaz 12 .

k= (kD Iml(r - 5GP e 1)/]w'] (E8)
ko= o - i - 2EnT e (E9)
w o z z Mgy 2z '
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APPENDIX F

The one-dimensional diode, and its use as a test problenm

We consider groups of ions with charge to mass ratios
= 2
e,/m =a/ X (F1)

emanating in the x-direction with current densities jsbfrom a flat emitter at
x=0. We assume fhat the scalar electric potential dépends only on x. To
avoid having to work with a function that is, at least in all the cases
discussed here, always negative, we uée the negative of the scalar potential,

normalized to be zero at x =0, to describe the electric field:
V(x) = -(potential at x - potential at emitter).

If Nn represents the particle density of group n, and'yn»their velotity,

conservation of the number of particles in group n requires

N - v, = independent of x,
or

n e v = jn = const. (F2)

Lo :
If we also allow an electron charge density Per € div E = charge density

gives
e V" = }‘ il_p_. -p . (FS)
0 C VL e

If we represent the initial energy of ions of group n by enVn, energy

conservation gives:

v =/;I’-»/V+vn

n n
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Assuming P to_beva known function of V, Eq. (F3) becomes

g o L d(v'%l_z jn/eon;'_ pe(V) Fa)
2 v A o (
Integrating this over V gives, with
. 2 v .
CV) = gg‘f p(V)AV . (FS)
0 :
by = 4i /egla ' (F6)
. L
B NI R) b (VFV_ - )7 (F7)

Vo represents the electric field at the emitter, and we assume for simplicity

that Vé > 0. From Eq. (F7) theﬁ follows:

V
x =/ dv (F8)
0 AWZ-Cv) + % b (AT, - A
For some discussions, it will be necessary to expand V'2 into a power
series in V for the case where all Vn>>0. If we write
.1y - ' -
C"(0) = 0 (0) = oy (/V,
which is consistent with a Boltzmann distribution for the electrons
-V/V . . .
(pe==pe 0¢ €, see Sect. 3a), we get from Lq. (F7);
V'l v(')2 g Ve g2V2/2 (F9)
with
bn 2 2
= _— = = - ) F10
gl AN EO pe,() EO z(pn,O pe,O’ ( )
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bn 1 2Pe,0 ono
g2=_€——V A =E‘—_(V —Z )

(F11)
0 e 2/V;'2vn 0

e n
In these expansions, P represents the charge density from ion group n at
the emitter, and Eq. (F9) is a good approximation when (V/Vn)2/8<< 1,
(V/VO)2/6<< 1.

To get an analytical test case, we follow Pierce}s argument that
leads to the '"Pierce electrodes'" as described in his book (ref. F1): If
we remove all particles for y> 0, the flow characterized by Eq. (F8) is not
perturbed provided we can construct an electrode structure in the y > 0 half-
space that has the property that if for y =0, the relationship between x and
V is given by Eq. (F8), Ey= 0 for y=0. To describe the vacuum fields for
y>0, it is advisable to augment the negative of the scalar potential, V,
(which satisfies Laplace's equation for y > 0) by its harmonic conjugate, A,

and form the analytic function of z
G(z) =V + iA , (F12)

A is the (only necessary) component of the vector potential in the direction

perpendicular to the x-y plane, and is related to Ex, Ey’ by

E_ = 3A/dy ; B, = “3A/9x .

It is also easily verified that
E¥ = B - iE = ¢'(2) F13)

b4
Since G(z) = V + iA represents a conformal mapping of the V,A plane onto the

z plane, and V= constant lines are perpendicular to the field lines, A=

constant represent field lines.

From all this follows directly that the fields and potentials for

y> 0 are given by Eqs. (F7) and (I'8) if one replaces X by z and V by G.
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Rewriting previously used equations this way, we obtain

2G" = d(G'z)/dG (F14)
G' = E* =\/v'2- CE)+2 b (VG+V_-AN ) (F15)
0 n n n
G
dc ,
2= ) & (F16)

Since, in the region of interest, G' is single—valued'and does not have any
singularities, it is indeed possible to find an electrode system that hué
the desired properties, and Fig. F2 depicts such a sysfem: When the
constants entering Eq. (F16) are specified, the shape of the continuation of
the emitter electrode follows from Iiq. (F16) by using as:integration limits
G = 0+ iA, with A increasing, starting from zero, up tovACI’ that point
representing one corner of the geometry one wants to treat. Letting then

V in G = V+iAC1 monotonically increase up to VCZ’ gives the shape of a
field line, leading to another corner. Letting then A in G = ch-fiA
decrease monotonitally from ACl to A=0 gives the other electrode, which
should then be continued parallel to the emitter for y<O0. 1f one introduces
a 1imitiﬁg symmetry line some place below the x axis pafallel to the x axis,
one has specified a non-trivial test problem that can be run with FLOW and
that has an analytiéal solution.

It is instructive to make some general statements about the electrodes,
as well as to discuss a few special cases. Since we want to discuss curva-
tures of electrodes, it is worthwhile to introduce the notation used here into
Eqs. (E6, E7): wusing the expression for elaw given by Eq. (E7) in Eq. (E6),

and replacing in Eq. (E6) z by G, and w by z, we obtain




a ' GH iag
k, = [6'] - [k, - Im (E;—'—7 e )1 (F17)
_ lag
For the case of an electrode, (V=const.), we set kC: 0 and e =i, and
get
_ "y a2 -
k_=-lG"|Re (G" /G'7) . (F18)

Z

‘tThe following statements result directly from (F14, F15, F18) with little
additional work, with the exception of the singularities for the curvatures
mentioned below in Section 3a(2) and 3b(1)I1. Calculations relating to these
curvatures are carried out in Appendix G..

1. There is no solution for the one-dimensional diode (except
the trivial solution V=0 everywhere) when the electric
field is zero at the emitter and the total charge density
vanishes there also. We therefore exclude that case from
the following considerations.

2. The angle hetween the tangent to every equipotential
(electrode) and the x a;is is 3/4 90° = 67.5° for
sufficiently large‘values of A.

3. Characteristics of equipotentials (electrodes) for
vanishingly small values of A.

a. G'>0: (At emitter or anyplace downstream) initial angle

O

o between tangent to electrode and x-axis = 90°.

init
‘(1) If all ion groups have non-zero energy, the
. . - ) . . - - [
initial curvature is given by kZ (ptot/eo)/c .
(2) If one or more Vn= 0, kZ< 0 has a singularity for
V=0, because when a Vn goes to zero, the associated

charge density goes to infinity. (This applies only

to V=0-electrode.)
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|

!
b. G =0 (V = 0-electrode for case VO = ()

(1) At least one V. =0: a, ., =67.5°.
v n init v !

I. If no electrons are present, and if all
Vn= 0, the electrode is a straight line
(Pierce’electrode, see 4a).

II. 1If electrons are present and/or at least
one Vn> 0, kZ< 0 has a singulérity.

(o)

(2) All Vn> 0 a 457, kz= 0 for A+ O.

init
4. Closed expressions for z(g) can be given when there are no
electrons and when there is only one ion species. (More than

one ion species, but. all Vn==0, is counted as one species only.)

a. V=05V, =0; z=4/3+1/Vb - ¢34

0 .
This is the original Pierce electrode system: The equi-
potential V=0 is obviously a straight line with a=67.5°.
The electrodes with V>0 start with @it S 90° and have an
e -3/4
initial curvature kZ =-/bv /4.

b. V;>0 leads to the following expression. .

/4

3
4vy

Z_.
3@

{\I/1+G/Vl-a (/1+G/v1 +2a) - /1T-a (1+2a) }
' (F19)

12
a=1-V, /bl/\’/‘l’

Because of its simplicity, this case was used with a=1 as a test problem ’
before electrons were introduced, and the result is shown in Figs. (FIl) |
and (F2): Fig. Fl shows the vacuum equipotentials and the ion.trajectories

in that field. Figure F2 shows equipotentials and ion trajectories after

the computation has converged.
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When one discusses one dimensional diodes as wevdo here, one should
never forget that the model "ions are always emitted in a direction per-
pendicular to the emitter surface' represénts an assumption that is
not realizable in the real world. While it may be possible to produce
conditions where (' =0 at the emitter, the cases that lead to singularities
for the curvature of the continuation of the emitter eleétrode are to a
stronger degree not realizable idealizations, and all configurations that

are close to them have to be treated with a lot of caution.
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APPENDIX G

Curvature of some equipotentials

We want té calculate the curvature of some equipotentials for very
small values of A in the case where at least one ion species has Vn= 0.
Lumping all ions with Vn= 0 into one group, for small enough G=1A, it is
sufficient to represent G'2 by |

2

G = v(')2

+ g0/6'+ g, G . ’fj ' . (G1)
with g, resulting from electrons and ions with Vn=>0 given by Eq. (F10),
and g9 given by ‘ ‘ : A

gO =. 2 4Jn/EO/E;
ions
with
V =0
n

With Eqs. (F18), (G1) and (F14), we get

: g, +2g,/G
k, = - |G4| Re /—1,-_ '20 /i (G2)
G ;
VO * g, G+g1(
1. V6>,0; for small A, we get
g g
kK = -2 Re o= .1 . 0 (G3)
z Ao T ViA a2 Vy/A

giving a (weak) singularity for A~ 0. Together with Eq. (Gl), we conclude
that the initial tangent in the y-direction bends in the "singular" way

| . . . o
expressed by Eq. (G3) in a new direction, approaching a n angle a=67.5
between tangent and x-axis.

2. V_.=0: for small A, we get




) g, AF o 1 1+2 8176700
= — ——————— e -T‘
z 4 G 1+g,/G/b,
— L
k = - .__%g_i\_d_ g_l Re _l.-_ = . _}.._ _.___g..l__... (G4)
z 4 g0  ViA 42 @EA%

We again get a (weak) singularity for A-» 0. Together with Eq. (Gl), we
lcarn that from the initial value o= 67.50, the tangeﬁt bends in the

"singular' way expressed by Eq. (G3) to a new direction, tending toward
a =45, only to ultimately return to 67.5° according to summary statement

#2 in Appendix F.
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APPENDIX H

Calculation of the electric field at the emitter

The calculétion of the electric field at the emitters is contaminated
by two errors: erroneous potentials at mesh points due to discretization,
and errors introdu;ed in calculating the electric field froh the potential
and the mesh geometry. Wé attack here the latter problem and will derive
a formula that is better than just dividing a potentiai difference by a
distance. |

We discuss a triangle whose one side is part of fhe emitter surface,
and want to fiﬁd the relationship between the electric. field Vé at the
emitter surface,voﬁ'one hand, and the distance D of the third triangle
point from the emitter, the potential difference V petween that point and
the emitter, and the other quantities characterizing the flow there. To do
so, we use the model of the one dimensional diode discus;ed in Appendix F.
Since there are at present no plans to introduce ions with initial velocity
zero at emittefs thét require electric field calculation, we use Eq. (F9)
to describe the electric field in the triangle. In Eq. (F6), de}ining the
quantities bn entering Eqs. (F10) and (F11), one has to‘use for jn the
current density component perpendicular to the emitter element, and for
Vn the energy associated with the velocity component perpendicular to the
emitter.

Introducing,

/82/2 D

u

<
"

Vg /2 v (H1)
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integration of Eq. (I'9) gives

v+B+/(v+ B)2+V(')2-82

'
B*‘Vo

u = In

Solving this fber6 gives

V-2 (coshu -1
- g (coshu -1) . u

0 D sinhu (H2)
A different form, good for small u, 1is
D% .
V-gl (51nhu/2)2
V} - 4 u/2 u

L0 D ) sinhu ’ (H3)

 These expressioné are good approximations when Eq. (F9) is a good represen-

‘tation of Lq. (F7j, i.e., when (V/Vn)2/8<< 1; (V/Ve)2/6<< 1.
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APPENDIX J

lon'Trajectories

Since the scalar potential is computed at the mesh points of an
irregular triangular mesh, computation of the ion trajectories is basically
accomplished if one traces an ion from the intersection with one side of
a.tfiangle through the triangle to the next intersecfion with a side of the
same triangle. Every traced ion is actually fepresentéfive of a current
(per unit length in the direction perpendicular to the x-y plane), and one
needs therefore, in addition to 'updating" information df initial conditions
for the equationsrqf motion, the total charge present in the triangle, and
its "center of mass'. To obtain the ion tréjéctdry, we aésume again that the
electric field is‘éonstant within the triangle. After sﬁiving the trajectories
first with only this electric field present, we then generalize thaf solution
and take into account to first order a constant magnetic field in the
direction perpendicﬁlar to the x-y plane. We use complex arithmetic to
formulate and solye the trajectory equations.

If 2g represents the complex representation of the electric field

multiplied by the charge to mass ratio of the ion, the equation of motion is:
z = 2g (J1)

Indicating initial conditions by the subscript 0, we get from Eq. (J1):

N
1}

2-.0 +2gt | » (J2)

. 2
z = ZO-+zOt+-gt . (J3)

The electric field .is casily obtained from Eq. (A9):
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> > -
E = v = 2
; e, V,/h, Zg ey by V,/(byh,)
Switching to complex.represcntation, it is clear from Fig. (A3) and (A4) that
L= % i(z5-2))V,/(byh,)
With a==b2h2/2 representing the area of the triangle (Eq. (D3)), we get
. _ 1 ¢ _ -
B o= o % Vi (z,-2) = 2g (m/e) . (J4)

To find the intersection of the trajectory, Eq. (J3), with one side of the

triangle, say the one connecting point 1 to point 3, we set

’ 2
z = 204-zot4-gt = z1+(z3 —zl) u E

The time of intersection follows from the condition that u is real:

2 * © 2
u]z3 —zll = (z, -?1) (zg -2y + 24t + gt")
With
. . *
b, = Im((ZO--Zl)(Z3 -2))
o * *
b, = Im(zo(z3—zl) ) ,
_ I *
b, = Im g(z3~ Zl) >

we obtain for the time t, of intersection of the trajectory, originating at

4

z, on side 1-2, with side 1-3:

0

b2t4 4—b1t44-b =0
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When the expression under the square root is negative, an intersection does
not exist. Among the existing intersections with all three sides of the
triangle, one is obviously only interested inithe one with the smallest
positive time t4. To avoid tests for the signs of ty it is easier to find
the largest value of 1/t4, needing only to pick the largest of the three

values-

_ byy2 b2 :
1ty = - 50—+ \l(m) B, (J5)

In the expression for the intersection with the side of the triangle from

which the trajectory starts, bOE 0 and Eq. (JS) has to be replaced by
1/t4 = -bz/b1 . | (J6)

Having thus found the correct t4 for the intersection, the new starting point

and velocity are obtained by using t, for t in Eqs. (J2) and (J3).

4

In the following discussion of charge deposition,.when talking about
current charge, etc., it should be understood that these terms mean the
mentioned quantity per unit length of the problem in the direction perpen-
dicular to the x-y plane.

With each trajectory is associated a current I. The relation between

I and the charge p per unit length of trajectory is obviously
I =p - |é| = pv = pds/dt
The total charge residing in a triangle is then given by

qy=Jeds =T - fdt =1 - t,, J7)

and its "center of mass'", z, also needed for the solution of Poisson's
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equation, is given by

ty
z = [ zdt/t, | (J8)
0 .
With Eq. (J3), we obtain
7=z 412 t/2+gt2/3 (J9)
0 0 4 ) .

When a homogeneous magnetic field B in the direction perpendicular to

the x-y plane is present, the equation of motion becomes

2 = 2g - iCz . (J10)

C is the cylcotron frequency (B times the charge to mass ratio) of the ion

species under consideration. First integration of Eq. (J10) gives

z = io-*th -iC(z - z (J11)

0

While this equation can be integrated in closed form, this is not advisable
since the solution involves trigonometric functions, and approximations have
to be made anyway for the calculation of t4. We therefore carry from now
on only terms up to first order in C. It turns out that that is a good
approximation as long as
v 12 .
(Lt4) /6<<1 (J12)
With this approximation, we get from Eq. (J11):
: . 2 L2 3 '
z = z04-zot+-gt -LL(zot /2 + gt /3) . (J13)

Defining, in addition to hO’ bl’ b2 the quantities

*
h, = Re glzg-2) /3,
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* *
b4 = Re 20(23-21) /2,

the condition for intersection of line 1-3 becomes

2 3.2
,vbzt + blt + bO - C(t b3 + t b4) =0 .

Introducing 1/t4= wy, We get

2
b0w4 -+b1w4-Fb2-C(b4-+b3/w4) =0

With ®a0

order in C

representing the right side of Eq. (J5) or (Jé); we get to first

Wty = vy 20 (J14)

+ C/w40 . (b34-b4w40)/(b1+,2b0w

With this value of t4, the endpoint of the trajectory in the triangle 'is
given by Eq. (J13), and the endpoint velocity follows from Eq. (J11) and
(J13). The total charge deposition is again given by Eq. (J7), and its ''center

of mass'" is obtained from Eqs. (J8) and (J13):

- 2 . .. 2 3
z = zO+ zot4/2 + gt4 (3 —1C(220t4 4—gt4 Y/12 . ‘(JIS)




—
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Figure A2. Identification of quantities in a triangle.
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Figure A3. Identification of quantities in a triangle.




Figure A4.
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Identification of quantities in a triangle.
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Figure A5. Identification of quantities in a triangle.




Figure A6.
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Identification of quantities in a triangle.
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Figure D1. TIdentification of XR’ X], and Yps Vg
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Figure Fl. TInitial equipotentials and ion trajectories in test problem.
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Final equipotentials and ion trajectories in test problem.
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Figure H1. Ion trajectory in triangle.




